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Abstract 

One of the mostly advanced AI technologies in recent year has been language models (LM) which 

necessitate a comparison or benchmark among many LM to enhance transparency of these models. The 

purpose of this study is to provide a fuller characterization of LMs rather than to focus on a specific aspect 

in order to increase societal impact. After a brief overview of the constituents of a benchmark and features 

of transparency, this study explores main aspects of a model - scenario, adaptation, metric- required to 

provide a roadmap for how to evaluate language models. Given the lack of studies in the field it is a step 

towards the design of more sophisticated models and aims to raise awareness of the importance of 

developing benchmarks for AI models. 
 

Introduction:  

The original promise of computing was to solve 

information overload in science. In his 1945 essay 

"As We May Think", Vannevar Bush (1945) 

proposed computers as a solution to manage the 

growing mountain of information. Licklider 

(1960) expanded on this with the vision of a 

symbiotic relationship between human-beings and 

machines so that computers would be "preparing 

the way for insights and decisions in scientific 

thinking" (Licklider, 1960).  

Within this spirit, in the past couple of years, LMs 

have continued to push the limits of what is 

possible with deep neural networks. However, 

when it comes to topics such as 

understanding, reasoning, planning, and common 

sense, scientists are divided about how to assess 

LMs. 

At its core, a LM is a box that takes in text and 

generates text (Figure 1). LMs are general 

purposes text interfaces that could be applied 

across a vast expanse of scenarios. For each 

scenario, there may be a broad set of desiderata 

such as accuracy, fairness, efficiency etc. among 

many others. 

This rapid proliferation of LMs necessitates a 

comparison or benchmark among many language 

models. Benchmarks encode values and priorities 

(Ethayarajh and Jurafsky, 2020; Birhane et al., 

2022) that specify directions for the AI 

community to be improved upon (Spärck Jones 

and Galliers, 1995; Spärck Jones, 2005; Kiela et 

al., 2021; Bowman and Dahl, 2021; Raji et al., 

2021).  

Overview of Benchmarks 

Benchmarks are one of the thorniest problems of 

AI research. On the one hand, researchers need a 

way to evaluate and compare their models. On the 

other hand, some concepts are really hard to 

measure. 

One of the major problems underpinning 

benchmarks is that we usually view them from a 

human intelligence perspective. As a simplified 

example, we consider chess as a complicated 

intelligence challenge because, on their way to 

mastering chess, human-beings must acquire a set 

of cognitive skills through hard work and talent. 

Yet, from a computational perspective, there can 

be a shortcut for finding good chess moves 

https://bdtechtalks.com/2021/01/28/deep-learning-explainer/
https://bdtechtalks.com/2022/06/27/large-language-models-logical-reasoning/
https://bdtechtalks.com/2022/07/25/large-language-models-cant-plan/
https://bdtechtalks.com/2021/12/06/ai-benchmarks-limitations/
https://bdtechtalks.com/2019/12/03/francois-chollet-arc-ai-measurement/
https://bdtechtalks.com/2019/12/03/francois-chollet-arc-ai-measurement/
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through a good algorithm, and the right inductive 

biases.  

As this example demonstrates, even some of the 

most carefully crafted benchmarks can be prone to 

computational shortcuts. In other words, while 

benchmarks are a good tool to compare machine 

learning models against one another, they are not 

anthropomorphic measures of cognitive skills in 

machines. 

When implemented and interpreted appropriately, 

benchmarks enable the broader community to 

better understand AI technology and influence its 

trajectory. In general, a benchmark involves three 

elements (Figure 1.): 

 
Figure 1.0 Overview of an LM Benchmark Example 

 

(1) Broad coverage and recognition of 

incompleteness: As it is not possible to consider 

all the scenarios and the desiderata that (could) 

pertain to LMs, a benchmark should provide a 

top-down taxonomy and make explicit all the 

major scenarios and metrics that are missing.  

(2) Multi-metric measurement: Societally 

beneficial systems reflect many values, not just 

accuracy. A benchmark should represent these 

plural desiderata, evaluating every desideratum 

for each scenario considered.  

(3) Standardization: As the object of evaluation is 

the LM, not a scenario-specific system, the 

strategy for adapting an LM to a scenario should 

be controlled for.  

Overall, a benchmark builds transparency by 

assessing LMs in their totality. Rather than 

focusing on a specific aspect, the aim is to strive 

for a fuller characterization of LMs to improve 

scientific understanding and increase societal 

impact.  

A benchmark of LM has two levels:  

(i) an abstract taxonomy of scenarios and 

metrics to define the design space for LM 

evaluation and  

(ii) a concrete set of implemented scenarios 

and metrics that were selected to prioritize 

coverage (e.g. different English varieties), 

value (e.g. user-facing applications), and 

feasibility (e.g. limited engineering 

resources).  

When doing a benchmark some key 

considerations should be taken into account. To 

begin with, while standardizing a model 

evaluation, in particular by evaluating all models 

for the same scenarios, same metrics, models 

themselves may be more suitable for particular 

scenarios, particular metrics, and particular 

prompts/adaptation methods.  

Moreover, while the evaluation itself may be 

standardized, the computational resources 

required to train these models may be very 

different (e.g. resource-intensive models generally 

fare better in our evaluation). 

Furthermore, models may also differ significantly 

in their exposure to the particular data distribution 

or evaluation instances in use, with the potential 

for train-test contamination.  

Even for the same scenario, the adaptation method 

that maximizes accuracy can differ across models 

which poses a fundamental challenge for what it 

means to standardize LM evaluation in a fair way 

across models.  

Given the myriad scenarios where LMs could 

provide value, it would be appealing for many 

reasons if upstream perplexity on LM objectives 

reliably predicted downstream accuracy. 

Unfortunately, when making these comparisons 

across model families, even when using bits-per-

byte (BPB)- which could provide more 
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comparison than perplexity-, this type of 

prediction might not always work well.  

Overview of LMs 

LMs are a sub-category of NLP (neural language 

programming) within the field of AI. As in any 

other field of AI, the challenge of transparency in 

AI models and datasets continues to receive 

increasing attention from academia and industry.  

When it comes to developing an AI 

model, producers are upstream creators of dataset 

and documentation, responsible for dataset 

collection, ownership, launch and maintenance.  

Agents are stakeholders who read transparency 

reports, and possess the agency to use or 

determine how themselves or others might use the 

described datasets or AI systems.  

Agents are distinct from Users, who are 

individuals and representatives who interact with 

products that rely on models trained on dataset. 

Users may consent to providing their data as a part 

of the product experience, and require a 

significantly different set of explanations and 

controls grounded within product experiences. 

Dataset design also plays a crucial role for LM 

development. All data is processed in a common 

markdown format to blend knowledge between 

sources. For the interface, one can use task-

specific tokens to support different types of 

knowledge. Uncurated data also means more 

tokens with limited transfer value for the target 

use-case; wasting compute budget.  

Transparency refers to a clear, easily 

understandable, and plain language explanation 

of what something is, what it does and why it does 

that. The following table (Table 1.0) includes core 

aspects of transparency. 

 

 

Table. 1.0 Core traits of transparency 

 
 

Yet, attempts to introduce standardized and 

sustainable mechanisms for transparency is 

hindered by real world constraints of the diversity 

of goals, workflows, and backgrounds of 

individual stakeholders participating in the life 

cycles of datasets and AI systems. 

In order to increase the transparency of NLP s, it 

might be useful to gain an understanding of the 

different tasks that they accomplish. 

To begin with, Question answering (QA) is a 

fundamental task in NLP that underpins many 

real-world applications including web search, 
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chatbots, and personal assistants. QA is very 

broad in terms of the questions that can be asked 

and the skills that are required to arrive at the 

answer, covering general language understanding, 

integration of knowledge, and reasoning (Gardner 

et al., 2019; Rogers et al., 2021).  

Information retrieval (IR) refers to the class of 

tasks concerned with searching large unstructured 

collections (often text collections), is central to 

numerous user-facing applications. IR has a long 

tradition of study (Salton and Lesk, 1965; Salton, 

1971; Spärck Jones, 1972; Salton and McGill, 

1983; Manning et al., 2008; Lin et al., 2021a) and 

is one of the most widely deployed language 

technologies.  

Text summarization is an established research 

direction in NLP (Luhn, 1958; Mani, 1999; 

Spärck Jones, 1999; Nenkova and McKeown, 

2012), with growing practical importance given 

the ever-increasing volume of text that would 

benefit from summarization.  

One can formulate text summarization as an 

unstructured sequence-to-sequence problem, 

where a document (e.g. a CNN news article) is the 

input and the LM is tasked with generating a 

summary that resembles the reference summary 

(e.g. the bullet point summary provided by CNN 

with their article).  

To evaluate model performance, the model-

generated summary is compared against a human-

authored reference summary using automated 

metrics for overall quality (Lin, 2004; Zhang et 

al., 2020b), faithfulness (Laban et al., 2022; 

Fabbri et al., 2022), and extractiveness (Grusky et 

al., 2018). Extractiveness refers to the extent to 

which model summaries involve copying from the 

input document. 

Consequently, it is important to measure and 

improve the faithfulness of these systems since 

unfaithful systems may be harmful by potentially 

spreading misinformation, including dangerous, 

yet hard to detect errors, when deployed in real-

world settings.  

Sentiment analysis has blossomed into its own 

subarea in the field with many works broadening 

and deepening the study of sentiment from its 

initial binary text-classification framing (Wiebe et 

al., 2005; McAuley et al., 2012; Socher et al., 

2013; Nakov et al., 2016; Potts et al., 2021).  

Text classification has a long history in NLP (see 

Yang and Pedersen, 1997; Yang, 1999; Joachims, 

1998; Aggarwal and Zhai, 2012) with tasks such 

as language identification, sentiment analysis, 

topic classification, and toxicity detection being 

some of the most prominent tasks within this 

family.  

Focusing on fairness of models is essential to 

ensuring technology plays a positive role in social 

change (Friedman and Nissenbaum, 1996; Abebe 

et al., 2020; Bommasani et al., 2021). Fairness 

refers to disparities in the task-specific accuracy 

of models across social groups. One way to 

operationalize fairness is by means of 

counterfactual fairness (Dwork et al., 2012; 

Kusner et al., 2017) which refers to model 

behavior on counterfactual data that is generated 

by perturbing existing test examples (cf. Ma et al., 

2021; Qian et al., 2022).  

In contrast, bias refers to properties of model 

generations, i.e. there is no (explicit) relationship 

with the accuracy or the specifics of a given task. 

These measures depend on the occurrence 

statistics of words signifying a demographic group 

across model generations.  

Toxicity detection (and the related tasks of hate 

speech and abusive language detection) is the task 

of identifying when input data contains toxic 

content, which originated due to the need for 

content moderation on the Internet (Schmidt and 

Wiegand, 2017; Rauh et al., 2022).  

Critiques of the task have noted that (i) the study 

of toxicity is overly reductive and divorced from 

use cases (Diaz et al., 2022), (ii) standard datasets 

often lack sufficient context to make reliable 

judgments (Pavlopoulos et al., 2020; Hovy and 

Yang, 2021), and (iii) the construct of toxicity 

depends on the annotator (Sap et al., 2019a; 

Gordon et al., 2022).  

Another crucial concept for ML models is toxicity 

used as an umbrella term for related concepts like 

hate speech, violent speech, and abusive language 

(see Talat et al., 2017).48 To operationalize 

toxicity measurement, one can use the Perspective 

API (Lees et al., 2022) 49 to detect toxic content 

in model generations.  

Given these features of LM the next section 

explores a conceptual framework for designing a 

LM benchmark. 



  CO 2 (6), 228-235 (2022) 232 

                   Ayse Kok Arslan 

     

 
 

Conceptual Model 

The study suggests to implement the following 

aspects for designing a LM benchmark (Figure 

2.):  

(1) Taxonomy: One can taxonomize the vast 

design space of language model evaluation into 

scenarios and metrics. By stating this taxonomy, 

one can select systematically from this space, 

which makes explicit both priorities in benchmark 

design and the limitations in the benchmark at 

present.  

(2) Broad coverage: Given the taxonomy, one 

select and implement core scenarios, for which 

one can comprehensively measure major metrics 

(accuracy, calibration, robustness, fairness, bias, 

toxicity, efficiency).  

(3) Evaluation of existing models: One can 

evaluate existing Lms under the standardized 

conditions of the benchmark, ensuring models can 

now be directly compared across many scenarios 

and metrics. These models might vary in terms of 

their public accessibility: while some of them are 

open, others are limited-access, and a few might 

even be closed. 

(4) Empirical findings: The extensive evaluation 

will offer guidance for future language model 

development and ample opportunities for further 

analysis.

 
Figure 2.0 Suggested LM Benchmark Process 

 

As seen in Figure 2, the following aspects 

(scenario, adaptation, metric) are required to 

evaluate a LM to provide a roadmap for how to 

evaluate language models:  

- Scenarios: A scenario instantiates a desired 

use case for a LM. Scenarios are what we 

want models to do. Each instance consists of 

(i) an input (a string) and (ii) a list of 

references. Each reference is a string 

annotated with properties relevant for 

evaluation (e.g. is it correct or acceptable?).  

- Adaptation: Adaptation is the procedure that 

transforms a LM, along with training 

instances, into a system that can make 

predictions on new instances. Examples of 

adaptation procedures include prompting, 

lightweight-finetuning, and finetuning. 

We define a language model to be a black box that 

takes as input a prompt (string), along with 

decoding parameters (e.g. temperature). The 

model outputs a completion (string), along with 

log probabilities of the prompt and completion. 

Viewing language models as text-to-text 

abstractions is important for two reasons:  

1. First, while the prototypical LM is usually a 

dense Transformer trained on raw text, LMs 

could also use an external document store 

(Lewis et al., 2020c), issue search queries on 

the web (Nakano et al., 2021), or be trained on 

human preferences (Ouyang et al., 2022; Bai 

et al., 2022). An ideal model should be 

agnostic with regard to these implementation 

details.  

2. Second, the text-to-text abstraction is a 

convenient general interface that can capture 

all the (text-only) tasks of interest, an idea that 

was pioneered by McCann et al. (2018) and 

Raffel et al. (2019).  

- Metrics: To determine how well the model 

performs, one can compute metrics over these 

completions and probabilities. Metrics 

concretely operationalize the abstract 

desiderata required for useful systems.  

To evaluate a LM, a series of runs must be 

implemented, where each run is defined by a 

scenario, adaptation method and metric. Each of 

these scenarios, adaptation, and metrics define a 

complicated and structured space, which one 

implicitly navigates to make decisions in 

evaluating a LM.  

Scenarios 
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One can taxonomize scenarios based on the 

following: 

(i) a task (e.g. question answering, 

summarization), which characterizes what 

we want a system to do;  

(ii) a domain (e.g. a Wikipedia 2018 dump), 

which characterizes the type of data we 

want the system to do well on; and  

(iii) the language or language variety (e.g. 

English).  

Tasks, domains, and languages are not atomic or 

unambiguous constructs: they can be made 

coarser and finer. Given this structure, one can 

deliberately select scenarios based on main 

overarching principles:  

(i) coverage of the space,  

(ii) minimality of the set of selected scenarios, 

and  

(iii) prioritizing scenarios that correspond to 

user-facing tasks.  

Given the ubiquity of natural language, the field 

of natural language processing (NLP) considers 

myriad tasks that correspond to language’s many 

functions (Jurafsky and Martin, 2000). To 

generate this set, one can take the tracks at a major 

NLP conference (ACL 2022), and for each track, 

one can map the associated subarea of NLP to 

canonical tasks for that track.  

Moreover, domains are a familiar construct in 

NLP, yet their imprecision complicates systematic 

coverage of domains. One can further decompose 

domains according to 3 W’s:  

(1) What (genre): The type of text, which captures 

subject and register differences. Examples: 

Wikipedia, social media, news, scientific papers, 

fiction.  

(2) When (time period): When the text was 

created.  

Examples: 1980s, pre-Internet, present day (e.g. 

does it cover very recent data?)  

(3) Who (demographic group): Who generated the 

data or who the data is about. Examples: 

Black/White, men/women, children/elderly.  

Models 

When deployed in practice, models are confronted 

with the complexities of the open world (e.g. 

typos) that cause most current systems to 

significantly degrade (Szegedy et al., 2014; 

Goodfellow et al., 2015; Jia and Liang, 2017; 

Belinkov and Bisk, 2018; Madry et al., 2018; 

Ribeiro et al., 2020; Santurkar et al., 2020; 

Tsipras, 2021; Dhole et al., 2021; Koh et al., 

2021; Yang et al., 2022).  

One suggestion is to measure the robustness of 

different models by evaluating them on 

transformations of an instance. That is, given a set 

of transformations for a given instance, one can 

measure the worst-case performance of a model 

across these transformations.  

On the one hand, measuring robustness to 

distribution or subpopulation shift (Oren et al., 

2019; Santurkar et al., 2020; Goel et al., 2020; 

Koh et al., 2021) requires scenarios with special 

structure (i.e., explicit domain/subpopulation 

annotations) as well as information about the 

training data of the models.  

On the other hand, measuring adversarial 

robustness (Biggio et al., 2013; Szegedy et al., 

2014) requires many adaptive queries to the model 

in order to approximate worst-case perturbations, 

which might not always be feasible (Wallace et 

al., 2019a; Morris et al., 2020).  

Moreover, the transformation/perturbation-based 

paradigm has been widely explored to study 

model robustness (e.g. Ribeiro et al., 2020; Goel 

et al., 2021; Wang et al., 2021a), in order to 

understand whether corruptions that arise in real 

use-cases (e.g. typos) affect the performance of 

the model significantly. The goal is to understand 

whether a model is sensitive to perturbations that 

change the target output and does not latch on 

irrelevant parts of the instance. 

Metrics 

To taxonomize the space of desiderata, one can 

begin by enumerating criteria that are necessary 

for developing useful systems. Yet, what does it 

mean for a system to be useful?  

Too often in AI, this has come to mean the system 

should be accurate in an average sense. While 

(average) accuracy is an important, and often 

necessary, property for a system (Raji et al., 

2022), accuracy is often not sufficient for a system 

to be useful/desirable.  
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Unfortunately, while many of the desiderata are 

well-studied by the NLP community, some are not 

codified in specific tracks/areas (e.g. uncertainty 

and calibration). Therefore, it is suggested to 

expand the scope to all AI conferences, drawing 

from a list of AI conference deadlines.  

Recommendations 

While reasoning is usually assumed to involve 

transitions in thought (Harman, 2013), possibly in 

some non-linguistic format, one typical way to 

assess reasoning abilities (e.g., in adult humans) is 

by means of explicit symbolic or linguistic tasks.  

In order to distinguish reasoning from language 

and knowledge as much as possible, one can focus 

on relatively abstract capacities necessary for 

sophisticated text-based or symbolic reasoning.  

To measure ampliative reasoning, one can use 

explicit rule induction and implicit function 

regression, which corresponds to making and 

applying claims about the likely causal structure 

for observations.  

For rule induction, one can design and implement 

rule_induct inspired by the LIME induction tasks, 

where we provide two examples generated from 

the same rule string, and task the model with 

inferring the underlying rule.  

For function regression, one can design and 

implement numeracy_prediction, which requires 

the model to perform symbolic regression given a 

few examples and apply the number relationship 

(e.g. linear) to a new input.  

One can also evaluate language models on more 

complex and realistic reasoning tasks that require 

multiple primitive reasoning skills to bridge the 

gap between understanding reasoning in very 

controlled and synthetic conditions and the type of 

reasoning required in practical contexts.  

Conclusions 

Focusing on evaluation of models is essential to 

ensure that technology plays a positive role in 

social change. Within this regard, this study 

explored the main features of benchmarks - 

scenario, adaptation, metric- required to provide a 

roadmap for how to evaluate LMs. It also made 

recommendations of how to use model and 

metrics for fairness and transparency when it 

comes to developing LM.  

This study conceptualized a benchmark model for 

evaluating NLP models. Given the lack of studies 

in the field it is a step towards the design of more 

sophisticated models and thus, right now, far from 

perfect. Nevertheless, it aims to raise awareness of 

the importance of developing benchmarks for AI 

models.  
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